
§1.6* Entropy and Mutual Information for DRV

- A length 𝑁 discrete random vector (DRV)  𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑁 with realizations of  

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁)

- Entropy of 𝑋 : Let 𝑃 𝑥 = Pr(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑁 = 𝑥𝑁) denote the distribution of 

DRV 𝑋, 

𝐻 𝑋 = 𝔼 log2 𝑃 𝑥
−1

= σ𝑥𝑃 𝑥 log2 𝑃 𝑥
−1

bits/vector
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- Similarly, given 𝑃 𝑥, 𝑦 = Pr( 𝑥1, 𝑥2, … , 𝑥𝑁 , (𝑦1, 𝑦2, … , 𝑦𝑁)) and 

𝑃 𝑥|𝑦 = Pr( 𝑥1, 𝑥2, … , 𝑥𝑁 |(𝑦1, 𝑦2, … , 𝑦𝑁))

- Joint Entropy:                 𝐻 𝑋, 𝑌 = 𝔼 log2 𝑃 𝑥, 𝑦
−1

- Conditional Entropy:     𝐻 𝑋|𝑌 = 𝔼 log2 𝑃 𝑥|𝑦
−1

= σ𝑥σ𝑦 𝑃 𝑥, 𝑦 log2 𝑃 𝑥, 𝑦
−1

bits/vector

= σ𝑥σ𝑦 𝑃 𝑥, 𝑦 log2 𝑃 𝑥|𝑦
−1

bits/vector
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- Mutual Information

𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻 𝑋|𝑌

=෍

𝑥

෍

𝑦

𝑃 𝑥, 𝑦 log2
𝑃 𝑥 𝑦

𝑃 𝑥

= 𝔼 log2
𝑃 𝑥 𝑦

𝑃 𝑥
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- Data Processing Inequality over a coded communication system

Encoder Channel Decoder

𝑢 = (𝑢1, 𝑢2, … , 𝑢𝐾)

𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑁)

𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑁)

ො𝑢 = (ො𝑢1, ො𝑢2, … , ො𝑢𝐾)

Note: The decoded message ො𝑢 provides less information about the original message 𝑢

than the received vector 𝑦. However, a digital system would need the decoder to estimate 

𝑢 through interpreting 𝑦. 

𝐼 𝑦, 𝑢 ≥ 𝐼 ො𝑢, 𝑢
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- Theorem 1. If some symbols 𝑋1, 𝑋2, … , 𝑋𝑁 of 𝑋 are independent, i.e., 

𝑃 𝑋 = 𝑃 𝑋1 𝑃 𝑋2 ⋯𝑃 𝑋𝑁 .

Proof:

෍

𝑖=1

𝑁

𝐼 𝑋𝑖 , 𝑌𝑖 =෍

𝑖=1

𝑁

𝔼 log2
𝑃 𝑥𝑖 𝑦𝑖
𝑃 𝑥𝑖

= 𝔼 log2
𝑃 𝑥1 𝑦1 𝑃 𝑥2 𝑦2 ⋯𝑃 𝑥𝑁 𝑦𝑁

𝑃 𝑥1 𝑃 𝑥2 ⋯𝑃 𝑥𝑁

𝐼 𝑋, 𝑌 = 𝔼 log2
𝑃 𝑥 𝑦

𝑃 𝑥
= 𝔼 log2

𝑃 𝑥 𝑦

𝑃 𝑥1 𝑃 𝑥2 ⋯𝑃 𝑥𝑁

𝐼 𝑋, 𝑌 ≥෍

𝑖=1

𝑁

𝐼 𝑋𝑖 , 𝑌𝑖
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෍

𝑖=1

𝑁

𝐼 𝑋𝑖 , 𝑌𝑖 − 𝐼 𝑋, 𝑌

(Applying Jensen’s inequality to the above eq.)

≤ log2 𝔼
𝑃 𝑥1 𝑦1 𝑃 𝑥2 𝑦2 …𝑃 𝑥𝑁 𝑦𝑁

𝑃 𝑥 𝑦

= log2 σ𝑥σ𝑦 𝑃 𝑥1 𝑦1 𝑃 𝑥2 𝑦2 …𝑃 𝑥𝑁 𝑦𝑁 𝑃(𝑦)

= log2 ෍

𝑥

𝑃(𝑥1)𝑃(𝑥2)…𝑃(𝑥𝑁)

= 0

= 𝔼 log2
𝑃 𝑥1 𝑦1 𝑃 𝑥2 𝑦2 …𝑃 𝑥𝑁 𝑦𝑁

𝑃 𝑥 𝑦
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- In a communication system,  

Channel
𝑋1, 𝑋2, … , 𝑋𝑁

Theorem 1 tells if  𝑋1, 𝑋2, … , 𝑋𝑁 are independent, 𝑌 tells more information about 𝑋 than the 

sum of each 𝑌𝑖 about 𝑋𝑖.

𝑌1, 𝑌2, … , 𝑌𝑁
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- Theorem 2. If the channel is described as memoryless, i.e., 𝑃 𝑦 𝑥 = ς𝑖=1
𝑁 𝑃 𝑦𝑖 𝑥𝑖 , 

we have

Proof:

𝐼 𝑋, 𝑌 ≤෍

𝑖=1

𝑁

𝐼 𝑋𝑖 , 𝑌𝑖

𝐼 𝑋, 𝑌 = 𝔼 log2
𝑃 𝑦 𝑥

𝑃 𝑦
= 𝔼 log2

𝑃 𝑦1 𝑥1 𝑃 𝑦2 𝑥2 …𝑃 𝑦𝑁 𝑥𝑁

𝑃 𝑦

෍

𝑖=1

𝑁

𝐼 𝑋𝑖 , 𝑌𝑖 =෍

𝑖=1

𝑁

𝔼 log2
𝑃 𝑦𝑖 𝑥𝑖
𝑃 𝑦𝑖

=𝔼 log2
𝑃 𝑦1 𝑥1 𝑃 𝑦2 𝑥2 …𝑃 𝑦𝑁 𝑥𝑁

𝑃 𝑦1 𝑃 𝑦2 …𝑃 𝑦𝑁
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(Applying Jensen’s inequality to the above eq.)

𝐼 𝑋, 𝑌 −෍

𝑖=1

𝑁

𝐼 𝑋𝑖 , 𝑌𝑖 = 𝔼 log2
𝑃 𝑦1 𝑃 𝑦2 …𝑃 𝑦𝑁

𝑃 𝑦

≤ log2 𝔼
𝑃 𝑦1 𝑃 𝑦2 …𝑃 𝑦𝑁

𝑃 𝑦

= log2 σ𝑥σ𝑦𝑃 𝑥 𝑦 𝑃 𝑦1 𝑃 𝑦2 …𝑃 𝑦𝑁

= log2 ෍

𝑥

𝑃(𝑥)

= 0
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- In a communication system,  

Channel
𝑋1, 𝑋2, … , 𝑋𝑁 𝑌1, 𝑌2, … , 𝑌𝑁

Theorem 2 tells if channel is discrete memoryless channel,  𝑌 tells less information about 𝑋

than the sum of each 𝑌𝑖 about 𝑋𝑖. 



- Corollary 5:

If channel is discrete & memoryless and source is independent, we have

𝐼 𝑋, 𝑌 =෍

𝑖=1

𝑁

𝐼 𝑋𝑖 , 𝑌𝑖
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This property will be used to prove the Shannon’s Channel Coding Theorem.
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